java.util
public class: TreeSet [javadoc |
source]
java.lang.Object
java.util.AbstractCollection<E>
java.util.AbstractSet<E>
java.util.TreeSet
All Implemented Interfaces:
Cloneable, NavigableSet, java$io$Serializable, Set, Collection
Direct Known Subclasses:
A
NavigableSet implementation based on a
TreeMap .
The elements are ordered using their {@linkplain Comparable natural
ordering}, or by a
Comparator provided at set creation
time, depending on which constructor is used.
This implementation provides guaranteed log(n) time cost for the basic
operations ({@code add}, {@code remove} and {@code contains}).
Note that the ordering maintained by a set (whether or not an explicit
comparator is provided) must be consistent with equals if it is to
correctly implement the {@code Set} interface. (See {@code Comparable}
or {@code Comparator} for a precise definition of consistent with
equals.) This is so because the {@code Set} interface is defined in
terms of the {@code equals} operation, but a {@code TreeSet} instance
performs all element comparisons using its {@code compareTo} (or
{@code compare}) method, so two elements that are deemed equal by this method
are, from the standpoint of the set, equal. The behavior of a set
is well-defined even if its ordering is inconsistent with equals; it
just fails to obey the general contract of the {@code Set} interface.
Note that this implementation is not synchronized.
If multiple threads access a tree set concurrently, and at least one
of the threads modifies the set, it must be synchronized
externally. This is typically accomplished by synchronizing on some
object that naturally encapsulates the set.
If no such object exists, the set should be "wrapped" using the
Collections.synchronizedSortedSet
method. This is best done at creation time, to prevent accidental
unsynchronized access to the set:
SortedSet s = Collections.synchronizedSortedSet(new TreeSet(...));
The iterators returned by this class's {@code iterator} method are
fail-fast: if the set is modified at any time after the iterator is
created, in any way except through the iterator's own {@code remove}
method, the iterator will throw a ConcurrentModificationException .
Thus, in the face of concurrent modification, the iterator fails quickly
and cleanly, rather than risking arbitrary, non-deterministic behavior at
an undetermined time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed
as it is, generally speaking, impossible to make any hard guarantees in the
presence of unsynchronized concurrent modification. Fail-fast iterators
throw {@code ConcurrentModificationException} on a best-effort basis.
Therefore, it would be wrong to write a program that depended on this
exception for its correctness: the fail-fast behavior of iterators
should be used only to detect bugs.
This class is a member of the
Java Collections Framework.
Constructor: |
public TreeSet() {
this(new TreeMap< E,Object >());
}
Constructs a new, empty tree set, sorted according to the
natural ordering of its elements. All elements inserted into
the set must implement the Comparable interface.
Furthermore, all such elements must be mutually
comparable: {@code e1.compareTo(e2)} must not throw a
{@code ClassCastException} for any elements {@code e1} and
{@code e2} in the set. If the user attempts to add an element
to the set that violates this constraint (for example, the user
attempts to add a string element to a set whose elements are
integers), the {@code add} call will throw a
{@code ClassCastException}. |
TreeSet(NavigableMap<E, Object> m) {
this.m = m;
}
Constructs a set backed by the specified navigable map. |
public TreeSet(Comparator<? super E> comparator) {
this(new TreeMap< >(comparator));
}
Constructs a new, empty tree set, sorted according to the specified
comparator. All elements inserted into the set must be mutually
comparable by the specified comparator: {@code comparator.compare(e1,
e2)} must not throw a {@code ClassCastException} for any elements
{@code e1} and {@code e2} in the set. If the user attempts to add
an element to the set that violates this constraint, the
{@code add} call will throw a {@code ClassCastException}. Parameters:
comparator - the comparator that will be used to order this set.
If {@code null}, the {@linkplain Comparable natural
ordering} of the elements will be used.
|
public TreeSet(Collection<? extends E> c) {
this();
addAll(c);
}
Constructs a new tree set containing the elements in the specified
collection, sorted according to the natural ordering of its
elements. All elements inserted into the set must implement the
Comparable interface. Furthermore, all such elements must be
mutually comparable: {@code e1.compareTo(e2)} must not throw a
{@code ClassCastException} for any elements {@code e1} and
{@code e2} in the set. Parameters:
c - collection whose elements will comprise the new set
Throws:
ClassCastException - if the elements in {@code c} are
not Comparable , or are not mutually comparable
NullPointerException - if the specified collection is null
|
public TreeSet(SortedSet<E> s) {
this(s.comparator());
addAll(s);
}
Constructs a new tree set containing the same elements and
using the same ordering as the specified sorted set. Parameters:
s - sorted set whose elements will comprise the new set
Throws:
NullPointerException - if the specified sorted set is null
|
Method from java.util.TreeSet Summary: |
---|
add, addAll, ceiling, clear, clone, comparator, contains, descendingIterator, descendingSet, first, floor, headSet, headSet, higher, isEmpty, iterator, last, lower, pollFirst, pollLast, remove, size, subSet, subSet, tailSet, tailSet |
Methods from java.util.AbstractCollection: |
---|
add, addAll, clear, contains, containsAll, isEmpty, iterator, remove, removeAll, retainAll, size, toArray, toArray, toString |
Methods from java.lang.Object: |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Method from java.util.TreeSet Detail: |
public boolean add(E e) {
return m.put(e, PRESENT)==null;
}
Adds the specified element to this set if it is not already present.
More formally, adds the specified element {@code e} to this set if
the set contains no element {@code e2} such that
(e==null ? e2==null : e.equals(e2)).
If this set already contains the element, the call leaves the set
unchanged and returns {@code false}. |
public boolean addAll(Collection<? extends E> c) {
// Use linear-time version if applicable
if (m.size()==0 && c.size() > 0 &&
c instanceof SortedSet &&
m instanceof TreeMap) {
SortedSet< ? extends E > set = (SortedSet< ? extends E >) c;
TreeMap< E,Object > map = (TreeMap< E, Object >) m;
Comparator< ? super E > cc = (Comparator< ? super E >) set.comparator();
Comparator< ? super E > mc = map.comparator();
if (cc==mc || (cc != null && cc.equals(mc))) {
map.addAllForTreeSet(set, PRESENT);
return true;
}
}
return super.addAll(c);
}
Adds all of the elements in the specified collection to this set. |
public E ceiling(E e) {
return m.ceilingKey(e);
}
|
public void clear() {
m.clear();
}
Removes all of the elements from this set.
The set will be empty after this call returns. |
public Object clone() {
TreeSet< E > clone = null;
try {
clone = (TreeSet< E >) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
clone.m = new TreeMap< >(m);
return clone;
}
Returns a shallow copy of this {@code TreeSet} instance. (The elements
themselves are not cloned.) |
public Comparator<? super E> comparator() {
return m.comparator();
}
|
public boolean contains(Object o) {
return m.containsKey(o);
}
Returns {@code true} if this set contains the specified element.
More formally, returns {@code true} if and only if this set
contains an element {@code e} such that
(o==null ? e==null : o.equals(e)). |
public Iterator<E> descendingIterator() {
return m.descendingKeySet().iterator();
}
Returns an iterator over the elements in this set in descending order. |
public NavigableSet<E> descendingSet() {
return new TreeSet< >(m.descendingMap());
}
|
public E first() {
return m.firstKey();
}
|
public E floor(E e) {
return m.floorKey(e);
}
|
public SortedSet<E> headSet(E toElement) {
return headSet(toElement, false);
}
|
public NavigableSet<E> headSet(E toElement,
boolean inclusive) {
return new TreeSet< >(m.headMap(toElement, inclusive));
}
|
public E higher(E e) {
return m.higherKey(e);
}
|
public boolean isEmpty() {
return m.isEmpty();
}
Returns {@code true} if this set contains no elements. |
public Iterator<E> iterator() {
return m.navigableKeySet().iterator();
}
Returns an iterator over the elements in this set in ascending order. |
public E last() {
return m.lastKey();
}
|
public E lower(E e) {
return m.lowerKey(e);
}
|
public E pollFirst() {
Map.Entry< E,? > e = m.pollFirstEntry();
return (e == null) ? null : e.getKey();
}
|
public E pollLast() {
Map.Entry< E,? > e = m.pollLastEntry();
return (e == null) ? null : e.getKey();
}
|
public boolean remove(Object o) {
return m.remove(o)==PRESENT;
}
Removes the specified element from this set if it is present.
More formally, removes an element {@code e} such that
(o==null ? e==null : o.equals(e)),
if this set contains such an element. Returns {@code true} if
this set contained the element (or equivalently, if this set
changed as a result of the call). (This set will not contain the
element once the call returns.) |
public int size() {
return m.size();
}
Returns the number of elements in this set (its cardinality). |
public SortedSet<E> subSet(E fromElement,
E toElement) {
return subSet(fromElement, true, toElement, false);
}
|
public NavigableSet<E> subSet(E fromElement,
boolean fromInclusive,
E toElement,
boolean toInclusive) {
return new TreeSet< >(m.subMap(fromElement, fromInclusive,
toElement, toInclusive));
}
|
public SortedSet<E> tailSet(E fromElement) {
return tailSet(fromElement, true);
}
|
public NavigableSet<E> tailSet(E fromElement,
boolean inclusive) {
return new TreeSet< >(m.tailMap(fromElement, inclusive));
}
|