Home » openjdk-7 » java » awt » [javadoc | source]

    1   /*
    2    * Copyright (c) 1995, 2008, Oracle and/or its affiliates. All rights reserved.
    3    * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    4    *
    5    * This code is free software; you can redistribute it and/or modify it
    6    * under the terms of the GNU General Public License version 2 only, as
    7    * published by the Free Software Foundation.  Oracle designates this
    8    * particular file as subject to the "Classpath" exception as provided
    9    * by Oracle in the LICENSE file that accompanied this code.
   10    *
   11    * This code is distributed in the hope that it will be useful, but WITHOUT
   12    * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   13    * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   14    * version 2 for more details (a copy is included in the LICENSE file that
   15    * accompanied this code).
   16    *
   17    * You should have received a copy of the GNU General Public License version
   18    * 2 along with this work; if not, write to the Free Software Foundation,
   19    * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   20    *
   21    * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   22    * or visit www.oracle.com if you need additional information or have any
   23    * questions.
   24    */
   25   
   26   package java.awt;
   27   
   28   import java.awt.geom.Rectangle2D;
   29   import java.beans.Transient;
   30   
   31   /**
   32    * A <code>Rectangle</code> specifies an area in a coordinate space that is
   33    * enclosed by the <code>Rectangle</code> object's upper-left point
   34    * {@code (x,y)}
   35    * in the coordinate space, its width, and its height.
   36    * <p>
   37    * A <code>Rectangle</code> object's <code>width</code> and
   38    * <code>height</code> are <code>public</code> fields. The constructors
   39    * that create a <code>Rectangle</code>, and the methods that can modify
   40    * one, do not prevent setting a negative value for width or height.
   41    * <p>
   42    * <a name="Empty">
   43    * A {@code Rectangle} whose width or height is exactly zero has location
   44    * along those axes with zero dimension, but is otherwise considered empty.
   45    * The {@link #isEmpty} method will return true for such a {@code Rectangle}.
   46    * Methods which test if an empty {@code Rectangle} contains or intersects
   47    * a point or rectangle will always return false if either dimension is zero.
   48    * Methods which combine such a {@code Rectangle} with a point or rectangle
   49    * will include the location of the {@code Rectangle} on that axis in the
   50    * result as if the {@link #add(Point)} method were being called.
   51    * </a>
   52    * <p>
   53    * <a name="NonExistant">
   54    * A {@code Rectangle} whose width or height is negative has neither
   55    * location nor dimension along those axes with negative dimensions.
   56    * Such a {@code Rectangle} is treated as non-existant along those axes.
   57    * Such a {@code Rectangle} is also empty with respect to containment
   58    * calculations and methods which test if it contains or intersects a
   59    * point or rectangle will always return false.
   60    * Methods which combine such a {@code Rectangle} with a point or rectangle
   61    * will ignore the {@code Rectangle} entirely in generating the result.
   62    * If two {@code Rectangle} objects are combined and each has a negative
   63    * dimension, the result will have at least one negative dimension.
   64    * </a>
   65    * <p>
   66    * Methods which affect only the location of a {@code Rectangle} will
   67    * operate on its location regardless of whether or not it has a negative
   68    * or zero dimension along either axis.
   69    * <p>
   70    * Note that a {@code Rectangle} constructed with the default no-argument
   71    * constructor will have dimensions of {@code 0x0} and therefore be empty.
   72    * That {@code Rectangle} will still have a location of {@code (0,0)} and
   73    * will contribute that location to the union and add operations.
   74    * Code attempting to accumulate the bounds of a set of points should
   75    * therefore initially construct the {@code Rectangle} with a specifically
   76    * negative width and height or it should use the first point in the set
   77    * to construct the {@code Rectangle}.
   78    * For example:
   79    * <pre>
   80    *     Rectangle bounds = new Rectangle(0, 0, -1, -1);
   81    *     for (int i = 0; i < points.length; i++) {
   82    *         bounds.add(points[i]);
   83    *     }
   84    * </pre>
   85    * or if we know that the points array contains at least one point:
   86    * <pre>
   87    *     Rectangle bounds = new Rectangle(points[0]);
   88    *     for (int i = 1; i < points.length; i++) {
   89    *         bounds.add(points[i]);
   90    *     }
   91    * </pre>
   92    * <p>
   93    * This class uses 32-bit integers to store its location and dimensions.
   94    * Frequently operations may produce a result that exceeds the range of
   95    * a 32-bit integer.
   96    * The methods will calculate their results in a way that avoids any
   97    * 32-bit overflow for intermediate results and then choose the best
   98    * representation to store the final results back into the 32-bit fields
   99    * which hold the location and dimensions.
  100    * The location of the result will be stored into the {@link #x} and
  101    * {@link #y} fields by clipping the true result to the nearest 32-bit value.
  102    * The values stored into the {@link #width} and {@link #height} dimension
  103    * fields will be chosen as the 32-bit values that encompass the largest
  104    * part of the true result as possible.
  105    * Generally this means that the dimension will be clipped independently
  106    * to the range of 32-bit integers except that if the location had to be
  107    * moved to store it into its pair of 32-bit fields then the dimensions
  108    * will be adjusted relative to the "best representation" of the location.
  109    * If the true result had a negative dimension and was therefore
  110    * non-existant along one or both axes, the stored dimensions will be
  111    * negative numbers in those axes.
  112    * If the true result had a location that could be represented within
  113    * the range of 32-bit integers, but zero dimension along one or both
  114    * axes, then the stored dimensions will be zero in those axes.
  115    *
  116    * @author      Sami Shaio
  117    * @since 1.0
  118    */
  119   public class Rectangle extends Rectangle2D
  120       implements Shape, java.io.Serializable
  121   {
  122   
  123       /**
  124        * The X coordinate of the upper-left corner of the <code>Rectangle</code>.
  125        *
  126        * @serial
  127        * @see #setLocation(int, int)
  128        * @see #getLocation()
  129        * @since 1.0
  130        */
  131       public int x;
  132   
  133       /**
  134        * The Y coordinate of the upper-left corner of the <code>Rectangle</code>.
  135        *
  136        * @serial
  137        * @see #setLocation(int, int)
  138        * @see #getLocation()
  139        * @since 1.0
  140        */
  141       public int y;
  142   
  143       /**
  144        * The width of the <code>Rectangle</code>.
  145        * @serial
  146        * @see #setSize(int, int)
  147        * @see #getSize()
  148        * @since 1.0
  149        */
  150       public int width;
  151   
  152       /**
  153        * The height of the <code>Rectangle</code>.
  154        *
  155        * @serial
  156        * @see #setSize(int, int)
  157        * @see #getSize()
  158        * @since 1.0
  159        */
  160       public int height;
  161   
  162       /*
  163        * JDK 1.1 serialVersionUID
  164        */
  165        private static final long serialVersionUID = -4345857070255674764L;
  166   
  167       /**
  168        * Initialize JNI field and method IDs
  169        */
  170       private static native void initIDs();
  171   
  172       static {
  173           /* ensure that the necessary native libraries are loaded */
  174           Toolkit.loadLibraries();
  175           if (!GraphicsEnvironment.isHeadless()) {
  176               initIDs();
  177           }
  178       }
  179   
  180       /**
  181        * Constructs a new <code>Rectangle</code> whose upper-left corner
  182        * is at (0,&nbsp;0) in the coordinate space, and whose width and
  183        * height are both zero.
  184        */
  185       public Rectangle() {
  186           this(0, 0, 0, 0);
  187       }
  188   
  189       /**
  190        * Constructs a new <code>Rectangle</code>, initialized to match
  191        * the values of the specified <code>Rectangle</code>.
  192        * @param r  the <code>Rectangle</code> from which to copy initial values
  193        *           to a newly constructed <code>Rectangle</code>
  194        * @since 1.1
  195        */
  196       public Rectangle(Rectangle r) {
  197           this(r.x, r.y, r.width, r.height);
  198       }
  199   
  200       /**
  201        * Constructs a new <code>Rectangle</code> whose upper-left corner is
  202        * specified as
  203        * {@code (x,y)} and whose width and height
  204        * are specified by the arguments of the same name.
  205        * @param     x the specified X coordinate
  206        * @param     y the specified Y coordinate
  207        * @param     width    the width of the <code>Rectangle</code>
  208        * @param     height   the height of the <code>Rectangle</code>
  209        * @since 1.0
  210        */
  211       public Rectangle(int x, int y, int width, int height) {
  212           this.x = x;
  213           this.y = y;
  214           this.width = width;
  215           this.height = height;
  216       }
  217   
  218       /**
  219        * Constructs a new <code>Rectangle</code> whose upper-left corner
  220        * is at (0,&nbsp;0) in the coordinate space, and whose width and
  221        * height are specified by the arguments of the same name.
  222        * @param width the width of the <code>Rectangle</code>
  223        * @param height the height of the <code>Rectangle</code>
  224        */
  225       public Rectangle(int width, int height) {
  226           this(0, 0, width, height);
  227       }
  228   
  229       /**
  230        * Constructs a new <code>Rectangle</code> whose upper-left corner is
  231        * specified by the {@link Point} argument, and
  232        * whose width and height are specified by the
  233        * {@link Dimension} argument.
  234        * @param p a <code>Point</code> that is the upper-left corner of
  235        * the <code>Rectangle</code>
  236        * @param d a <code>Dimension</code>, representing the
  237        * width and height of the <code>Rectangle</code>
  238        */
  239       public Rectangle(Point p, Dimension d) {
  240           this(p.x, p.y, d.width, d.height);
  241       }
  242   
  243       /**
  244        * Constructs a new <code>Rectangle</code> whose upper-left corner is the
  245        * specified <code>Point</code>, and whose width and height are both zero.
  246        * @param p a <code>Point</code> that is the top left corner
  247        * of the <code>Rectangle</code>
  248        */
  249       public Rectangle(Point p) {
  250           this(p.x, p.y, 0, 0);
  251       }
  252   
  253       /**
  254        * Constructs a new <code>Rectangle</code> whose top left corner is
  255        * (0,&nbsp;0) and whose width and height are specified
  256        * by the <code>Dimension</code> argument.
  257        * @param d a <code>Dimension</code>, specifying width and height
  258        */
  259       public Rectangle(Dimension d) {
  260           this(0, 0, d.width, d.height);
  261       }
  262   
  263       /**
  264        * Returns the X coordinate of the bounding <code>Rectangle</code> in
  265        * <code>double</code> precision.
  266        * @return the X coordinate of the bounding <code>Rectangle</code>.
  267        */
  268       public double getX() {
  269           return x;
  270       }
  271   
  272       /**
  273        * Returns the Y coordinate of the bounding <code>Rectangle</code> in
  274        * <code>double</code> precision.
  275        * @return the Y coordinate of the bounding <code>Rectangle</code>.
  276        */
  277       public double getY() {
  278           return y;
  279       }
  280   
  281       /**
  282        * Returns the width of the bounding <code>Rectangle</code> in
  283        * <code>double</code> precision.
  284        * @return the width of the bounding <code>Rectangle</code>.
  285        */
  286       public double getWidth() {
  287           return width;
  288       }
  289   
  290       /**
  291        * Returns the height of the bounding <code>Rectangle</code> in
  292        * <code>double</code> precision.
  293        * @return the height of the bounding <code>Rectangle</code>.
  294        */
  295       public double getHeight() {
  296           return height;
  297       }
  298   
  299       /**
  300        * Gets the bounding <code>Rectangle</code> of this <code>Rectangle</code>.
  301        * <p>
  302        * This method is included for completeness, to parallel the
  303        * <code>getBounds</code> method of
  304        * {@link Component}.
  305        * @return    a new <code>Rectangle</code>, equal to the
  306        * bounding <code>Rectangle</code> for this <code>Rectangle</code>.
  307        * @see       java.awt.Component#getBounds
  308        * @see       #setBounds(Rectangle)
  309        * @see       #setBounds(int, int, int, int)
  310        * @since     1.1
  311        */
  312       @Transient
  313       public Rectangle getBounds() {
  314           return new Rectangle(x, y, width, height);
  315       }
  316   
  317       /**
  318        * {@inheritDoc}
  319        * @since 1.2
  320        */
  321       public Rectangle2D getBounds2D() {
  322           return new Rectangle(x, y, width, height);
  323       }
  324   
  325       /**
  326        * Sets the bounding <code>Rectangle</code> of this <code>Rectangle</code>
  327        * to match the specified <code>Rectangle</code>.
  328        * <p>
  329        * This method is included for completeness, to parallel the
  330        * <code>setBounds</code> method of <code>Component</code>.
  331        * @param r the specified <code>Rectangle</code>
  332        * @see       #getBounds
  333        * @see       java.awt.Component#setBounds(java.awt.Rectangle)
  334        * @since     1.1
  335        */
  336       public void setBounds(Rectangle r) {
  337           setBounds(r.x, r.y, r.width, r.height);
  338       }
  339   
  340       /**
  341        * Sets the bounding <code>Rectangle</code> of this
  342        * <code>Rectangle</code> to the specified
  343        * <code>x</code>, <code>y</code>, <code>width</code>,
  344        * and <code>height</code>.
  345        * <p>
  346        * This method is included for completeness, to parallel the
  347        * <code>setBounds</code> method of <code>Component</code>.
  348        * @param x the new X coordinate for the upper-left
  349        *                    corner of this <code>Rectangle</code>
  350        * @param y the new Y coordinate for the upper-left
  351        *                    corner of this <code>Rectangle</code>
  352        * @param width the new width for this <code>Rectangle</code>
  353        * @param height the new height for this <code>Rectangle</code>
  354        * @see       #getBounds
  355        * @see       java.awt.Component#setBounds(int, int, int, int)
  356        * @since     1.1
  357        */
  358       public void setBounds(int x, int y, int width, int height) {
  359           reshape(x, y, width, height);
  360       }
  361   
  362       /**
  363        * Sets the bounds of this {@code Rectangle} to the integer bounds
  364        * which encompass the specified {@code x}, {@code y}, {@code width},
  365        * and {@code height}.
  366        * If the parameters specify a {@code Rectangle} that exceeds the
  367        * maximum range of integers, the result will be the best
  368        * representation of the specified {@code Rectangle} intersected
  369        * with the maximum integer bounds.
  370        * @param x the X coordinate of the upper-left corner of
  371        *                  the specified rectangle
  372        * @param y the Y coordinate of the upper-left corner of
  373        *                  the specified rectangle
  374        * @param width the width of the specified rectangle
  375        * @param height the new height of the specified rectangle
  376        */
  377       public void setRect(double x, double y, double width, double height) {
  378           int newx, newy, neww, newh;
  379   
  380           if (x > 2.0 * Integer.MAX_VALUE) {
  381               // Too far in positive X direction to represent...
  382               // We cannot even reach the left side of the specified
  383               // rectangle even with both x & width set to MAX_VALUE.
  384               // The intersection with the "maximal integer rectangle"
  385               // is non-existant so we should use a width < 0.
  386               // REMIND: Should we try to determine a more "meaningful"
  387               // adjusted value for neww than just "-1"?
  388               newx = Integer.MAX_VALUE;
  389               neww = -1;
  390           } else {
  391               newx = clip(x, false);
  392               if (width >= 0) width += x-newx;
  393               neww = clip(width, width >= 0);
  394           }
  395   
  396           if (y > 2.0 * Integer.MAX_VALUE) {
  397               // Too far in positive Y direction to represent...
  398               newy = Integer.MAX_VALUE;
  399               newh = -1;
  400           } else {
  401               newy = clip(y, false);
  402               if (height >= 0) height += y-newy;
  403               newh = clip(height, height >= 0);
  404           }
  405   
  406           reshape(newx, newy, neww, newh);
  407       }
  408       // Return best integer representation for v, clipped to integer
  409       // range and floor-ed or ceiling-ed, depending on the boolean.
  410       private static int clip(double v, boolean doceil) {
  411           if (v <= Integer.MIN_VALUE) {
  412               return Integer.MIN_VALUE;
  413           }
  414           if (v >= Integer.MAX_VALUE) {
  415               return Integer.MAX_VALUE;
  416           }
  417           return (int) (doceil ? Math.ceil(v) : Math.floor(v));
  418       }
  419   
  420       /**
  421        * Sets the bounding <code>Rectangle</code> of this
  422        * <code>Rectangle</code> to the specified
  423        * <code>x</code>, <code>y</code>, <code>width</code>,
  424        * and <code>height</code>.
  425        * <p>
  426        * @param x the new X coordinate for the upper-left
  427        *                    corner of this <code>Rectangle</code>
  428        * @param y the new Y coordinate for the upper-left
  429        *                    corner of this <code>Rectangle</code>
  430        * @param width the new width for this <code>Rectangle</code>
  431        * @param height the new height for this <code>Rectangle</code>
  432        * @deprecated As of JDK version 1.1,
  433        * replaced by <code>setBounds(int, int, int, int)</code>.
  434        */
  435       @Deprecated
  436       public void reshape(int x, int y, int width, int height) {
  437           this.x = x;
  438           this.y = y;
  439           this.width = width;
  440           this.height = height;
  441       }
  442   
  443       /**
  444        * Returns the location of this <code>Rectangle</code>.
  445        * <p>
  446        * This method is included for completeness, to parallel the
  447        * <code>getLocation</code> method of <code>Component</code>.
  448        * @return the <code>Point</code> that is the upper-left corner of
  449        *                  this <code>Rectangle</code>.
  450        * @see       java.awt.Component#getLocation
  451        * @see       #setLocation(Point)
  452        * @see       #setLocation(int, int)
  453        * @since     1.1
  454        */
  455       public Point getLocation() {
  456           return new Point(x, y);
  457       }
  458   
  459       /**
  460        * Moves this <code>Rectangle</code> to the specified location.
  461        * <p>
  462        * This method is included for completeness, to parallel the
  463        * <code>setLocation</code> method of <code>Component</code>.
  464        * @param p the <code>Point</code> specifying the new location
  465        *                for this <code>Rectangle</code>
  466        * @see       java.awt.Component#setLocation(java.awt.Point)
  467        * @see       #getLocation
  468        * @since     1.1
  469        */
  470       public void setLocation(Point p) {
  471           setLocation(p.x, p.y);
  472       }
  473   
  474       /**
  475        * Moves this <code>Rectangle</code> to the specified location.
  476        * <p>
  477        * This method is included for completeness, to parallel the
  478        * <code>setLocation</code> method of <code>Component</code>.
  479        * @param x the X coordinate of the new location
  480        * @param y the Y coordinate of the new location
  481        * @see       #getLocation
  482        * @see       java.awt.Component#setLocation(int, int)
  483        * @since     1.1
  484        */
  485       public void setLocation(int x, int y) {
  486           move(x, y);
  487       }
  488   
  489       /**
  490        * Moves this <code>Rectangle</code> to the specified location.
  491        * <p>
  492        * @param x the X coordinate of the new location
  493        * @param y the Y coordinate of the new location
  494        * @deprecated As of JDK version 1.1,
  495        * replaced by <code>setLocation(int, int)</code>.
  496        */
  497       @Deprecated
  498       public void move(int x, int y) {
  499           this.x = x;
  500           this.y = y;
  501       }
  502   
  503       /**
  504        * Translates this <code>Rectangle</code> the indicated distance,
  505        * to the right along the X coordinate axis, and
  506        * downward along the Y coordinate axis.
  507        * @param dx the distance to move this <code>Rectangle</code>
  508        *                 along the X axis
  509        * @param dy the distance to move this <code>Rectangle</code>
  510        *                 along the Y axis
  511        * @see       java.awt.Rectangle#setLocation(int, int)
  512        * @see       java.awt.Rectangle#setLocation(java.awt.Point)
  513        */
  514       public void translate(int dx, int dy) {
  515           int oldv = this.x;
  516           int newv = oldv + dx;
  517           if (dx < 0) {
  518               // moving leftward
  519               if (newv > oldv) {
  520                   // negative overflow
  521                   // Only adjust width if it was valid (>= 0).
  522                   if (width >= 0) {
  523                       // The right edge is now conceptually at
  524                       // newv+width, but we may move newv to prevent
  525                       // overflow.  But we want the right edge to
  526                       // remain at its new location in spite of the
  527                       // clipping.  Think of the following adjustment
  528                       // conceptually the same as:
  529                       // width += newv; newv = MIN_VALUE; width -= newv;
  530                       width += newv - Integer.MIN_VALUE;
  531                       // width may go negative if the right edge went past
  532                       // MIN_VALUE, but it cannot overflow since it cannot
  533                       // have moved more than MIN_VALUE and any non-negative
  534                       // number + MIN_VALUE does not overflow.
  535                   }
  536                   newv = Integer.MIN_VALUE;
  537               }
  538           } else {
  539               // moving rightward (or staying still)
  540               if (newv < oldv) {
  541                   // positive overflow
  542                   if (width >= 0) {
  543                       // Conceptually the same as:
  544                       // width += newv; newv = MAX_VALUE; width -= newv;
  545                       width += newv - Integer.MAX_VALUE;
  546                       // With large widths and large displacements
  547                       // we may overflow so we need to check it.
  548                       if (width < 0) width = Integer.MAX_VALUE;
  549                   }
  550                   newv = Integer.MAX_VALUE;
  551               }
  552           }
  553           this.x = newv;
  554   
  555           oldv = this.y;
  556           newv = oldv + dy;
  557           if (dy < 0) {
  558               // moving upward
  559               if (newv > oldv) {
  560                   // negative overflow
  561                   if (height >= 0) {
  562                       height += newv - Integer.MIN_VALUE;
  563                       // See above comment about no overflow in this case
  564                   }
  565                   newv = Integer.MIN_VALUE;
  566               }
  567           } else {
  568               // moving downward (or staying still)
  569               if (newv < oldv) {
  570                   // positive overflow
  571                   if (height >= 0) {
  572                       height += newv - Integer.MAX_VALUE;
  573                       if (height < 0) height = Integer.MAX_VALUE;
  574                   }
  575                   newv = Integer.MAX_VALUE;
  576               }
  577           }
  578           this.y = newv;
  579       }
  580   
  581       /**
  582        * Gets the size of this <code>Rectangle</code>, represented by
  583        * the returned <code>Dimension</code>.
  584        * <p>
  585        * This method is included for completeness, to parallel the
  586        * <code>getSize</code> method of <code>Component</code>.
  587        * @return a <code>Dimension</code>, representing the size of
  588        *            this <code>Rectangle</code>.
  589        * @see       java.awt.Component#getSize
  590        * @see       #setSize(Dimension)
  591        * @see       #setSize(int, int)
  592        * @since     1.1
  593        */
  594       public Dimension getSize() {
  595           return new Dimension(width, height);
  596       }
  597   
  598       /**
  599        * Sets the size of this <code>Rectangle</code> to match the
  600        * specified <code>Dimension</code>.
  601        * <p>
  602        * This method is included for completeness, to parallel the
  603        * <code>setSize</code> method of <code>Component</code>.
  604        * @param d the new size for the <code>Dimension</code> object
  605        * @see       java.awt.Component#setSize(java.awt.Dimension)
  606        * @see       #getSize
  607        * @since     1.1
  608        */
  609       public void setSize(Dimension d) {
  610           setSize(d.width, d.height);
  611       }
  612   
  613       /**
  614        * Sets the size of this <code>Rectangle</code> to the specified
  615        * width and height.
  616        * <p>
  617        * This method is included for completeness, to parallel the
  618        * <code>setSize</code> method of <code>Component</code>.
  619        * @param width the new width for this <code>Rectangle</code>
  620        * @param height the new height for this <code>Rectangle</code>
  621        * @see       java.awt.Component#setSize(int, int)
  622        * @see       #getSize
  623        * @since     1.1
  624        */
  625       public void setSize(int width, int height) {
  626           resize(width, height);
  627       }
  628   
  629       /**
  630        * Sets the size of this <code>Rectangle</code> to the specified
  631        * width and height.
  632        * <p>
  633        * @param width the new width for this <code>Rectangle</code>
  634        * @param height the new height for this <code>Rectangle</code>
  635        * @deprecated As of JDK version 1.1,
  636        * replaced by <code>setSize(int, int)</code>.
  637        */
  638       @Deprecated
  639       public void resize(int width, int height) {
  640           this.width = width;
  641           this.height = height;
  642       }
  643   
  644       /**
  645        * Checks whether or not this <code>Rectangle</code> contains the
  646        * specified <code>Point</code>.
  647        * @param p the <code>Point</code> to test
  648        * @return    <code>true</code> if the specified <code>Point</code>
  649        *            is inside this <code>Rectangle</code>;
  650        *            <code>false</code> otherwise.
  651        * @since     1.1
  652        */
  653       public boolean contains(Point p) {
  654           return contains(p.x, p.y);
  655       }
  656   
  657       /**
  658        * Checks whether or not this <code>Rectangle</code> contains the
  659        * point at the specified location {@code (x,y)}.
  660        *
  661        * @param  x the specified X coordinate
  662        * @param  y the specified Y coordinate
  663        * @return    <code>true</code> if the point
  664        *            {@code (x,y)} is inside this
  665        *            <code>Rectangle</code>;
  666        *            <code>false</code> otherwise.
  667        * @since     1.1
  668        */
  669       public boolean contains(int x, int y) {
  670           return inside(x, y);
  671       }
  672   
  673       /**
  674        * Checks whether or not this <code>Rectangle</code> entirely contains
  675        * the specified <code>Rectangle</code>.
  676        *
  677        * @param     r   the specified <code>Rectangle</code>
  678        * @return    <code>true</code> if the <code>Rectangle</code>
  679        *            is contained entirely inside this <code>Rectangle</code>;
  680        *            <code>false</code> otherwise
  681        * @since     1.2
  682        */
  683       public boolean contains(Rectangle r) {
  684           return contains(r.x, r.y, r.width, r.height);
  685       }
  686   
  687       /**
  688        * Checks whether this <code>Rectangle</code> entirely contains
  689        * the <code>Rectangle</code>
  690        * at the specified location {@code (X,Y)} with the
  691        * specified dimensions {@code (W,H)}.
  692        * @param     X the specified X coordinate
  693        * @param     Y the specified Y coordinate
  694        * @param     W   the width of the <code>Rectangle</code>
  695        * @param     H   the height of the <code>Rectangle</code>
  696        * @return    <code>true</code> if the <code>Rectangle</code> specified by
  697        *            {@code (X, Y, W, H)}
  698        *            is entirely enclosed inside this <code>Rectangle</code>;
  699        *            <code>false</code> otherwise.
  700        * @since     1.1
  701        */
  702       public boolean contains(int X, int Y, int W, int H) {
  703           int w = this.width;
  704           int h = this.height;
  705           if ((w | h | W | H) < 0) {
  706               // At least one of the dimensions is negative...
  707               return false;
  708           }
  709           // Note: if any dimension is zero, tests below must return false...
  710           int x = this.x;
  711           int y = this.y;
  712           if (X < x || Y < y) {
  713               return false;
  714           }
  715           w += x;
  716           W += X;
  717           if (W <= X) {
  718               // X+W overflowed or W was zero, return false if...
  719               // either original w or W was zero or
  720               // x+w did not overflow or
  721               // the overflowed x+w is smaller than the overflowed X+W
  722               if (w >= x || W > w) return false;
  723           } else {
  724               // X+W did not overflow and W was not zero, return false if...
  725               // original w was zero or
  726               // x+w did not overflow and x+w is smaller than X+W
  727               if (w >= x && W > w) return false;
  728           }
  729           h += y;
  730           H += Y;
  731           if (H <= Y) {
  732               if (h >= y || H > h) return false;
  733           } else {
  734               if (h >= y && H > h) return false;
  735           }
  736           return true;
  737       }
  738   
  739       /**
  740        * Checks whether or not this <code>Rectangle</code> contains the
  741        * point at the specified location {@code (X,Y)}.
  742        *
  743        * @param  X the specified X coordinate
  744        * @param  Y the specified Y coordinate
  745        * @return    <code>true</code> if the point
  746        *            {@code (X,Y)} is inside this
  747        *            <code>Rectangle</code>;
  748        *            <code>false</code> otherwise.
  749        * @deprecated As of JDK version 1.1,
  750        * replaced by <code>contains(int, int)</code>.
  751        */
  752       @Deprecated
  753       public boolean inside(int X, int Y) {
  754           int w = this.width;
  755           int h = this.height;
  756           if ((w | h) < 0) {
  757               // At least one of the dimensions is negative...
  758               return false;
  759           }
  760           // Note: if either dimension is zero, tests below must return false...
  761           int x = this.x;
  762           int y = this.y;
  763           if (X < x || Y < y) {
  764               return false;
  765           }
  766           w += x;
  767           h += y;
  768           //    overflow || intersect
  769           return ((w < x || w > X) &&
  770                   (h < y || h > Y));
  771       }
  772   
  773       /**
  774        * Determines whether or not this <code>Rectangle</code> and the specified
  775        * <code>Rectangle</code> intersect. Two rectangles intersect if
  776        * their intersection is nonempty.
  777        *
  778        * @param r the specified <code>Rectangle</code>
  779        * @return    <code>true</code> if the specified <code>Rectangle</code>
  780        *            and this <code>Rectangle</code> intersect;
  781        *            <code>false</code> otherwise.
  782        */
  783       public boolean intersects(Rectangle r) {
  784           int tw = this.width;
  785           int th = this.height;
  786           int rw = r.width;
  787           int rh = r.height;
  788           if (rw <= 0 || rh <= 0 || tw <= 0 || th <= 0) {
  789               return false;
  790           }
  791           int tx = this.x;
  792           int ty = this.y;
  793           int rx = r.x;
  794           int ry = r.y;
  795           rw += rx;
  796           rh += ry;
  797           tw += tx;
  798           th += ty;
  799           //      overflow || intersect
  800           return ((rw < rx || rw > tx) &&
  801                   (rh < ry || rh > ty) &&
  802                   (tw < tx || tw > rx) &&
  803                   (th < ty || th > ry));
  804       }
  805   
  806       /**
  807        * Computes the intersection of this <code>Rectangle</code> with the
  808        * specified <code>Rectangle</code>. Returns a new <code>Rectangle</code>
  809        * that represents the intersection of the two rectangles.
  810        * If the two rectangles do not intersect, the result will be
  811        * an empty rectangle.
  812        *
  813        * @param     r   the specified <code>Rectangle</code>
  814        * @return    the largest <code>Rectangle</code> contained in both the
  815        *            specified <code>Rectangle</code> and in
  816        *            this <code>Rectangle</code>; or if the rectangles
  817        *            do not intersect, an empty rectangle.
  818        */
  819       public Rectangle intersection(Rectangle r) {
  820           int tx1 = this.x;
  821           int ty1 = this.y;
  822           int rx1 = r.x;
  823           int ry1 = r.y;
  824           long tx2 = tx1; tx2 += this.width;
  825           long ty2 = ty1; ty2 += this.height;
  826           long rx2 = rx1; rx2 += r.width;
  827           long ry2 = ry1; ry2 += r.height;
  828           if (tx1 < rx1) tx1 = rx1;
  829           if (ty1 < ry1) ty1 = ry1;
  830           if (tx2 > rx2) tx2 = rx2;
  831           if (ty2 > ry2) ty2 = ry2;
  832           tx2 -= tx1;
  833           ty2 -= ty1;
  834           // tx2,ty2 will never overflow (they will never be
  835           // larger than the smallest of the two source w,h)
  836           // they might underflow, though...
  837           if (tx2 < Integer.MIN_VALUE) tx2 = Integer.MIN_VALUE;
  838           if (ty2 < Integer.MIN_VALUE) ty2 = Integer.MIN_VALUE;
  839           return new Rectangle(tx1, ty1, (int) tx2, (int) ty2);
  840       }
  841   
  842       /**
  843        * Computes the union of this <code>Rectangle</code> with the
  844        * specified <code>Rectangle</code>. Returns a new
  845        * <code>Rectangle</code> that
  846        * represents the union of the two rectangles.
  847        * <p>
  848        * If either {@code Rectangle} has any dimension less than zero
  849        * the rules for <a href=#NonExistant>non-existant</a> rectangles
  850        * apply.
  851        * If only one has a dimension less than zero, then the result
  852        * will be a copy of the other {@code Rectangle}.
  853        * If both have dimension less than zero, then the result will
  854        * have at least one dimension less than zero.
  855        * <p>
  856        * If the resulting {@code Rectangle} would have a dimension
  857        * too large to be expressed as an {@code int}, the result
  858        * will have a dimension of {@code Integer.MAX_VALUE} along
  859        * that dimension.
  860        * @param r the specified <code>Rectangle</code>
  861        * @return    the smallest <code>Rectangle</code> containing both
  862        *            the specified <code>Rectangle</code> and this
  863        *            <code>Rectangle</code>.
  864        */
  865       public Rectangle union(Rectangle r) {
  866           long tx2 = this.width;
  867           long ty2 = this.height;
  868           if ((tx2 | ty2) < 0) {
  869               // This rectangle has negative dimensions...
  870               // If r has non-negative dimensions then it is the answer.
  871               // If r is non-existant (has a negative dimension), then both
  872               // are non-existant and we can return any non-existant rectangle
  873               // as an answer.  Thus, returning r meets that criterion.
  874               // Either way, r is our answer.
  875               return new Rectangle(r);
  876           }
  877           long rx2 = r.width;
  878           long ry2 = r.height;
  879           if ((rx2 | ry2) < 0) {
  880               return new Rectangle(this);
  881           }
  882           int tx1 = this.x;
  883           int ty1 = this.y;
  884           tx2 += tx1;
  885           ty2 += ty1;
  886           int rx1 = r.x;
  887           int ry1 = r.y;
  888           rx2 += rx1;
  889           ry2 += ry1;
  890           if (tx1 > rx1) tx1 = rx1;
  891           if (ty1 > ry1) ty1 = ry1;
  892           if (tx2 < rx2) tx2 = rx2;
  893           if (ty2 < ry2) ty2 = ry2;
  894           tx2 -= tx1;
  895           ty2 -= ty1;
  896           // tx2,ty2 will never underflow since both original rectangles
  897           // were already proven to be non-empty
  898           // they might overflow, though...
  899           if (tx2 > Integer.MAX_VALUE) tx2 = Integer.MAX_VALUE;
  900           if (ty2 > Integer.MAX_VALUE) ty2 = Integer.MAX_VALUE;
  901           return new Rectangle(tx1, ty1, (int) tx2, (int) ty2);
  902       }
  903   
  904       /**
  905        * Adds a point, specified by the integer arguments {@code newx,newy}
  906        * to the bounds of this {@code Rectangle}.
  907        * <p>
  908        * If this {@code Rectangle} has any dimension less than zero,
  909        * the rules for <a href=#NonExistant>non-existant</a>
  910        * rectangles apply.
  911        * In that case, the new bounds of this {@code Rectangle} will
  912        * have a location equal to the specified coordinates and
  913        * width and height equal to zero.
  914        * <p>
  915        * After adding a point, a call to <code>contains</code> with the
  916        * added point as an argument does not necessarily return
  917        * <code>true</code>. The <code>contains</code> method does not
  918        * return <code>true</code> for points on the right or bottom
  919        * edges of a <code>Rectangle</code>. Therefore, if the added point
  920        * falls on the right or bottom edge of the enlarged
  921        * <code>Rectangle</code>, <code>contains</code> returns
  922        * <code>false</code> for that point.
  923        * If the specified point must be contained within the new
  924        * {@code Rectangle}, a 1x1 rectangle should be added instead:
  925        * <pre>
  926        *     r.add(newx, newy, 1, 1);
  927        * </pre>
  928        * @param newx the X coordinate of the new point
  929        * @param newy the Y coordinate of the new point
  930        */
  931       public void add(int newx, int newy) {
  932           if ((width | height) < 0) {
  933               this.x = newx;
  934               this.y = newy;
  935               this.width = this.height = 0;
  936               return;
  937           }
  938           int x1 = this.x;
  939           int y1 = this.y;
  940           long x2 = this.width;
  941           long y2 = this.height;
  942           x2 += x1;
  943           y2 += y1;
  944           if (x1 > newx) x1 = newx;
  945           if (y1 > newy) y1 = newy;
  946           if (x2 < newx) x2 = newx;
  947           if (y2 < newy) y2 = newy;
  948           x2 -= x1;
  949           y2 -= y1;
  950           if (x2 > Integer.MAX_VALUE) x2 = Integer.MAX_VALUE;
  951           if (y2 > Integer.MAX_VALUE) y2 = Integer.MAX_VALUE;
  952           reshape(x1, y1, (int) x2, (int) y2);
  953       }
  954   
  955       /**
  956        * Adds the specified {@code Point} to the bounds of this
  957        * {@code Rectangle}.
  958        * <p>
  959        * If this {@code Rectangle} has any dimension less than zero,
  960        * the rules for <a href=#NonExistant>non-existant</a>
  961        * rectangles apply.
  962        * In that case, the new bounds of this {@code Rectangle} will
  963        * have a location equal to the coordinates of the specified
  964        * {@code Point} and width and height equal to zero.
  965        * <p>
  966        * After adding a <code>Point</code>, a call to <code>contains</code>
  967        * with the added <code>Point</code> as an argument does not
  968        * necessarily return <code>true</code>. The <code>contains</code>
  969        * method does not return <code>true</code> for points on the right
  970        * or bottom edges of a <code>Rectangle</code>. Therefore if the added
  971        * <code>Point</code> falls on the right or bottom edge of the
  972        * enlarged <code>Rectangle</code>, <code>contains</code> returns
  973        * <code>false</code> for that <code>Point</code>.
  974        * If the specified point must be contained within the new
  975        * {@code Rectangle}, a 1x1 rectangle should be added instead:
  976        * <pre>
  977        *     r.add(pt.x, pt.y, 1, 1);
  978        * </pre>
  979        * @param pt the new <code>Point</code> to add to this
  980        *           <code>Rectangle</code>
  981        */
  982       public void add(Point pt) {
  983           add(pt.x, pt.y);
  984       }
  985   
  986       /**
  987        * Adds a <code>Rectangle</code> to this <code>Rectangle</code>.
  988        * The resulting <code>Rectangle</code> is the union of the two
  989        * rectangles.
  990        * <p>
  991        * If either {@code Rectangle} has any dimension less than 0, the
  992        * result will have the dimensions of the other {@code Rectangle}.
  993        * If both {@code Rectangle}s have at least one dimension less
  994        * than 0, the result will have at least one dimension less than 0.
  995        * <p>
  996        * If either {@code Rectangle} has one or both dimensions equal
  997        * to 0, the result along those axes with 0 dimensions will be
  998        * equivalent to the results obtained by adding the corresponding
  999        * origin coordinate to the result rectangle along that axis,
 1000        * similar to the operation of the {@link #add(Point)} method,
 1001        * but contribute no further dimension beyond that.
 1002        * <p>
 1003        * If the resulting {@code Rectangle} would have a dimension
 1004        * too large to be expressed as an {@code int}, the result
 1005        * will have a dimension of {@code Integer.MAX_VALUE} along
 1006        * that dimension.
 1007        * @param  r the specified <code>Rectangle</code>
 1008        */
 1009       public void add(Rectangle r) {
 1010           long tx2 = this.width;
 1011           long ty2 = this.height;
 1012           if ((tx2 | ty2) < 0) {
 1013               reshape(r.x, r.y, r.width, r.height);
 1014           }
 1015           long rx2 = r.width;
 1016           long ry2 = r.height;
 1017           if ((rx2 | ry2) < 0) {
 1018               return;
 1019           }
 1020           int tx1 = this.x;
 1021           int ty1 = this.y;
 1022           tx2 += tx1;
 1023           ty2 += ty1;
 1024           int rx1 = r.x;
 1025           int ry1 = r.y;
 1026           rx2 += rx1;
 1027           ry2 += ry1;
 1028           if (tx1 > rx1) tx1 = rx1;
 1029           if (ty1 > ry1) ty1 = ry1;
 1030           if (tx2 < rx2) tx2 = rx2;
 1031           if (ty2 < ry2) ty2 = ry2;
 1032           tx2 -= tx1;
 1033           ty2 -= ty1;
 1034           // tx2,ty2 will never underflow since both original
 1035           // rectangles were non-empty
 1036           // they might overflow, though...
 1037           if (tx2 > Integer.MAX_VALUE) tx2 = Integer.MAX_VALUE;
 1038           if (ty2 > Integer.MAX_VALUE) ty2 = Integer.MAX_VALUE;
 1039           reshape(tx1, ty1, (int) tx2, (int) ty2);
 1040       }
 1041   
 1042       /**
 1043        * Resizes the <code>Rectangle</code> both horizontally and vertically.
 1044        * <p>
 1045        * This method modifies the <code>Rectangle</code> so that it is
 1046        * <code>h</code> units larger on both the left and right side,
 1047        * and <code>v</code> units larger at both the top and bottom.
 1048        * <p>
 1049        * The new <code>Rectangle</code> has {@code (x - h, y - v)}
 1050        * as its upper-left corner,
 1051        * width of {@code (width + 2h)},
 1052        * and a height of {@code (height + 2v)}.
 1053        * <p>
 1054        * If negative values are supplied for <code>h</code> and
 1055        * <code>v</code>, the size of the <code>Rectangle</code>
 1056        * decreases accordingly.
 1057        * The {@code grow} method will check for integer overflow
 1058        * and underflow, but does not check whether the resulting
 1059        * values of {@code width} and {@code height} grow
 1060        * from negative to non-negative or shrink from non-negative
 1061        * to negative.
 1062        * @param h the horizontal expansion
 1063        * @param v the vertical expansion
 1064        */
 1065       public void grow(int h, int v) {
 1066           long x0 = this.x;
 1067           long y0 = this.y;
 1068           long x1 = this.width;
 1069           long y1 = this.height;
 1070           x1 += x0;
 1071           y1 += y0;
 1072   
 1073           x0 -= h;
 1074           y0 -= v;
 1075           x1 += h;
 1076           y1 += v;
 1077   
 1078           if (x1 < x0) {
 1079               // Non-existant in X direction
 1080               // Final width must remain negative so subtract x0 before
 1081               // it is clipped so that we avoid the risk that the clipping
 1082               // of x0 will reverse the ordering of x0 and x1.
 1083               x1 -= x0;
 1084               if (x1 < Integer.MIN_VALUE) x1 = Integer.MIN_VALUE;
 1085               if (x0 < Integer.MIN_VALUE) x0 = Integer.MIN_VALUE;
 1086               else if (x0 > Integer.MAX_VALUE) x0 = Integer.MAX_VALUE;
 1087           } else { // (x1 >= x0)
 1088               // Clip x0 before we subtract it from x1 in case the clipping
 1089               // affects the representable area of the rectangle.
 1090               if (x0 < Integer.MIN_VALUE) x0 = Integer.MIN_VALUE;
 1091               else if (x0 > Integer.MAX_VALUE) x0 = Integer.MAX_VALUE;
 1092               x1 -= x0;
 1093               // The only way x1 can be negative now is if we clipped
 1094               // x0 against MIN and x1 is less than MIN - in which case
 1095               // we want to leave the width negative since the result
 1096               // did not intersect the representable area.
 1097               if (x1 < Integer.MIN_VALUE) x1 = Integer.MIN_VALUE;
 1098               else if (x1 > Integer.MAX_VALUE) x1 = Integer.MAX_VALUE;
 1099           }
 1100   
 1101           if (y1 < y0) {
 1102               // Non-existant in Y direction
 1103               y1 -= y0;
 1104               if (y1 < Integer.MIN_VALUE) y1 = Integer.MIN_VALUE;
 1105               if (y0 < Integer.MIN_VALUE) y0 = Integer.MIN_VALUE;
 1106               else if (y0 > Integer.MAX_VALUE) y0 = Integer.MAX_VALUE;
 1107           } else { // (y1 >= y0)
 1108               if (y0 < Integer.MIN_VALUE) y0 = Integer.MIN_VALUE;
 1109               else if (y0 > Integer.MAX_VALUE) y0 = Integer.MAX_VALUE;
 1110               y1 -= y0;
 1111               if (y1 < Integer.MIN_VALUE) y1 = Integer.MIN_VALUE;
 1112               else if (y1 > Integer.MAX_VALUE) y1 = Integer.MAX_VALUE;
 1113           }
 1114   
 1115           reshape((int) x0, (int) y0, (int) x1, (int) y1);
 1116       }
 1117   
 1118       /**
 1119        * {@inheritDoc}
 1120        * @since 1.2
 1121        */
 1122       public boolean isEmpty() {
 1123           return (width <= 0) || (height <= 0);
 1124       }
 1125   
 1126       /**
 1127        * {@inheritDoc}
 1128        * @since 1.2
 1129        */
 1130       public int outcode(double x, double y) {
 1131           /*
 1132            * Note on casts to double below.  If the arithmetic of
 1133            * x+w or y+h is done in int, then we may get integer
 1134            * overflow. By converting to double before the addition
 1135            * we force the addition to be carried out in double to
 1136            * avoid overflow in the comparison.
 1137            *
 1138            * See bug 4320890 for problems that this can cause.
 1139            */
 1140           int out = 0;
 1141           if (this.width <= 0) {
 1142               out |= OUT_LEFT | OUT_RIGHT;
 1143           } else if (x < this.x) {
 1144               out |= OUT_LEFT;
 1145           } else if (x > this.x + (double) this.width) {
 1146               out |= OUT_RIGHT;
 1147           }
 1148           if (this.height <= 0) {
 1149               out |= OUT_TOP | OUT_BOTTOM;
 1150           } else if (y < this.y) {
 1151               out |= OUT_TOP;
 1152           } else if (y > this.y + (double) this.height) {
 1153               out |= OUT_BOTTOM;
 1154           }
 1155           return out;
 1156       }
 1157   
 1158       /**
 1159        * {@inheritDoc}
 1160        * @since 1.2
 1161        */
 1162       public Rectangle2D createIntersection(Rectangle2D r) {
 1163           if (r instanceof Rectangle) {
 1164               return intersection((Rectangle) r);
 1165           }
 1166           Rectangle2D dest = new Rectangle2D.Double();
 1167           Rectangle2D.intersect(this, r, dest);
 1168           return dest;
 1169       }
 1170   
 1171       /**
 1172        * {@inheritDoc}
 1173        * @since 1.2
 1174        */
 1175       public Rectangle2D createUnion(Rectangle2D r) {
 1176           if (r instanceof Rectangle) {
 1177               return union((Rectangle) r);
 1178           }
 1179           Rectangle2D dest = new Rectangle2D.Double();
 1180           Rectangle2D.union(this, r, dest);
 1181           return dest;
 1182       }
 1183   
 1184       /**
 1185        * Checks whether two rectangles are equal.
 1186        * <p>
 1187        * The result is <code>true</code> if and only if the argument is not
 1188        * <code>null</code> and is a <code>Rectangle</code> object that has the
 1189        * same upper-left corner, width, and height as
 1190        * this <code>Rectangle</code>.
 1191        * @param obj the <code>Object</code> to compare with
 1192        *                this <code>Rectangle</code>
 1193        * @return    <code>true</code> if the objects are equal;
 1194        *            <code>false</code> otherwise.
 1195        */
 1196       public boolean equals(Object obj) {
 1197           if (obj instanceof Rectangle) {
 1198               Rectangle r = (Rectangle)obj;
 1199               return ((x == r.x) &&
 1200                       (y == r.y) &&
 1201                       (width == r.width) &&
 1202                       (height == r.height));
 1203           }
 1204           return super.equals(obj);
 1205       }
 1206   
 1207       /**
 1208        * Returns a <code>String</code> representing this
 1209        * <code>Rectangle</code> and its values.
 1210        * @return a <code>String</code> representing this
 1211        *               <code>Rectangle</code> object's coordinate and size values.
 1212        */
 1213       public String toString() {
 1214           return getClass().getName() + "[x=" + x + ",y=" + y + ",width=" + width + ",height=" + height + "]";
 1215       }
 1216   }

Home » openjdk-7 » java » awt » [javadoc | source]